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Abstract. The key problem of exit-channel effects in unimolecular reactions, which make Transition State
Theory (TST) generally unsuitable for the calculation of product state distributions, is analyzed in the
triatomic case ABC → AB + C for a total angular momentum equal to zero. The vibrational energy
of AB is supposed to be quasi conserved on the way from the transition state (TS) to the products.
Moreover, classical mechanics is used for the description of rotational and translational motions. In this
frame, batches of trajectories are run on model potential energy surfaces from the TS to the products.
Their initial conditions on the dividing surface associated with the TS are not distributed at random but
instead, they form curves the shapes of which are guided by physical considerations. The reflection of these
curves on hypersurfaces orthogonal to the reaction path provides worthwhile information about the nature
of exit-channel effects. It is shown that the modulus of the rotational angular momentum of AB is more
likely to decrease than to increase, the amplitude of the variation being larger on the average in the first
than in the second case. As a consequence, exit-channel effects cause the rotational state distribution to
be colder in the products than at the TS, as observed in the reaction O2X → O2 + X (X = H,D,T). In
addition to that, a slight improvement of a model recently developed by the authors allows the description
of exit-channel effects in a satisfying way which might be included in TST in order to go beyond the Phase
Space Theory (PST) of product state distributions.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.50.-s Scattering of atoms,
molecules, and ions – 82.20.-w Chemical kinetics

1 Introduction

Transition State Theory (TST) is one of the leading theo-
ries in the field of chemical reactivity [1]. In a quite simple
way compared to a dynamical study, TST provides a sat-
isfying answer to the main question asked by kineticists,
i.e. how do external parameters like temperature or pres-
sure, affect the rate of a chemical reaction. Moreover, the
desire to check the validity of the basic assumptions of
TST – like the no recrossing of the transition state – by
performing dynamical calculations on model potential en-
ergy surfaces, led the researchers to obtain a deep insight,
at least within the framework of classical mechanics, into
the elementary chemical act that represents the crossing
of a transition state (TS) [2].

In the field of reaction dynamics, many workers focus
on the way in which the energy of a barrier-less unimolec-
ular reaction is finally distributed among the product de-
grees of freedom [3–5]. In the case when the excess energy
(energy available in the products) is sufficiently low, TST
makes possible a straightforward prediction and interpre-
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tation of how the kinematics controls the energy partition-
ing (analogous remarks hold for bimolecular processes of
the same nature, i.e. without barriers and with low excess
energies in both the reagents and the products) [6]. This is
due to the fact that (i) TST allows a prediction of the vi-
brational, rotational and translation energy distributions
at the TS, provided that the system loses the memory of
initial conditions before dissociating and (ii) these ener-
gies are conserved from the TS to the products. In such a
case of barrier-less process studied at a low excess energy,
TST is usually called Phase Space Theory (PST) [7].

On the other hand, when the excess energy is suffi-
ciently large, there are exit-channel effects [8] – essentially
couplings between rotation and translation motions of the
nascent products from the TS on – which modify the en-
ergy partitioning with respect to the predictions of TST
(or PST), as has been clearly shown in the beautiful ex-
periments of Moore et al. [4] and also Reisler et al. [5].
That we are able to precisely measure the alterations of
state distributions caused by the transfers [4] and yet, be
unable to give a clear interpretation of these alterations,
makes the nature of exit-channel effects one of the topical
questions of unimolecular reaction dynamics.
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Some attempts were made in the past to include an
adiabatic channel assumption in the theory, that is to as-
sume that bending vibrations at the TS correlate adiabat-
ically with free-rotations in the products [9,10]. However,
as evidenced in recent calculations on the unimolecular
process O2H→ O2 + H [11], strong non adiabaticities are
very likely to occur once the TS is crossed.

Recently, we proposed a model of integration of the
equations of motion along the free-rotation path (FPI
model) [12], i.e. the path followed by the system if one sup-
presses artificially the angular dependence of the potential
energy (see Sect. 2). In the case where the velocity of recoil
between nascent fragments is sufficiently large at the TS,
this model leads to a reasonable expression of the final
rotational angular momentum in terms of the dynamical
conditions at the TS. However, only part of the trajecto-
ries may be described by such a model which has to be
improved for a complete description of energy transfers.

As a first step in that direction, we focus the present
work on the analysis of exit-channel effects in the simple
yet interesting case of three-atom unimolecular processes
performed in supersonic beam experiments. Some of the
conclusions drawn allow an understanding of the weakness
of the model previously evoked and suggest methods to
refine it.

The article is organized as follows. In Section 2, we
define the initial dynamical conditions of the triatomic
system and a number of hypotheses which make tractable
the analysis of the dynamics in the exit-channel. In par-
ticular, classical mechanics is used as it is reasonable for
the description of rotation and translation motions at the
molecular level [13]. A model reaction is obtained which
allows to grasp some of the complexities of the transfers.
Moreover, the main limitation of the FPI model is dis-
cussed. In Section 3, the description of the dissociation
step is still more simplified in order to circumvent some
technical difficulties encountered in the phase space anal-
ysis of more realistic systems. The resulting dynamical
model allows an insight into the nature of exit-channel ef-
fects. A slightly modified version of the FPI model is then
deduced which leads to results in good agreement with
trajectory calculations. Section 4 deals with the realistic
processes O2X → O2 + X (X = H,D,T) and Section 5
concludes.

2 Presentation of the problem
2.1 System of interest

The process of interest is of the type ABC → ABC∗ →
AB + C. In practice, jet-cooled ABC molecules are op-
tically excited to a pure vibrational level at an energy in
excess of the dissociation energy, followed by the unimolec-
ular reaction ABC∗ → AB + C [4,5]. The energy disposal
with respect to the bottom of the product channel is noted
EP . In such experiments, the average magnitude of the to-
tal angular momentum J is most of the time so low that
we keep it at zero [14]. The rotational angular momentum
j of AB and the orbital angular momentum L of C with
respect to AB have same modular and opposite directions
so that the motion of the three atoms is coplanar.

2.2 Hypotheses

(1) As in the method of Wardlaw and Marcus [13], a
semiclassical description of the exit-channel dynamics is
adopted; the vibration of AB is quantized whereas its ro-
tation and the translation of C with respect to AB are
treated within the framework of classical mechanics. The
standard Jacobi coordinates R (distance between C and
the center of mass G of AB) and φ (angle between GC and
AB) are used (see Fig. 1 in Ref. [12]). The hybrid phase
space/quantum state for ABC is thus completely defined
by a set of five numbers (R, PR, φ, j, n), where PR is the
momentum conjugate to R and n is the vibrational quan-
tum number of AB.

(2) In the interval between the optical excitation and
the final dissociation, the energy is supposed to randomize
completely over all the degrees of freedom of ABC∗. As a
consequence, a microcanonical distribution of the states
(R, PR, φ, j, n) is assumed at the TS.

(3) A standard assumption of statistical theories is
that the vibrational levels of AB evolve adiabatically from
the TS onto the products. For the sake of simplicity, we
thus neglect the resulting small variation of the vibrational
energy EV . Hence, the system reduces to a rigid rotor AB
interacting with an atom C, the disposal of energy being
EP −EV .

(4) In the exit-channel, the interaction potential en-
ergy between the rigid rotor AB and C is approximated by:

VI(R, φ) = VR(R) + Vφ(φ) exp(−α(R−Re)) (2.1)

where VR(R) is the potential energy along the reaction
path, associated with the attractive force between AB and
C, Vφ(φ) is the potential energy associated with the bend-
ing force of ABC and the exponential term accounts for
the decrease of the bending force from TS to products (see
Ref. [12] for some remarks on the validity of Eq. (2.1)).
For the quasi-classical trajectory calculations discussed
in the next section, VR(R) and Vφ(φ) are approximated
by Lennard-Jones and harmonic functions, respectively
given by:

VR(R) = 4D

(( σ
R

)12

−
( σ
R

)6
)

(2.2)

and

Vφ(φ) =
1

2
Cφ2. (2.3)

The parameters of the potential energy are chosen to
be: α = 2.6 Å−1, Re = 1.7 Å, D = 3 eV, σ = 1.5 Å
and C = 9.853 eV rd−1. The other parameters used are:
mA = mB = mC = 15 amu (atomic masses), re = 1.2 Å
(equilibrium distance of AB) and EP − EV = 0.2 eV. All
these values have been selected so as to mimic a realis-
tic process. A contour plot representation of the potential
energy is given in Figure 1.

2.3 Exit-channel effects

From the qualitative viewpoint, exit-channel effects can
be simply understood from the discussion of three trajec-
tories (a), (b) and (c) displayed in Figure 1.
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Fig. 1. Contour level representation of the model potential
energy given by equations (2.1–2.3). X is equal to R cosφ and
Y to R sinφ (distances are in Å). Contours are equally spaced
by 0.1 eV from −1.0 eV to 1.0 eV. Three trajectories (a), (b)
and (c) are also represented. Trajectory (a) is the last periodic
orbit between the well and the products. The projection of the
dividing surface (transition state) on the configuration space
coincides with this orbit. Trajectory (b) starts from a point K
of the transition state defined by X = 2.9 and Y = 0, with a
large recoil velocity and a small rotational angular momentum.
Trajectory (c), which starts from the same point but takes a
direction very close to that of the periodic orbit, completes one
oscillation before leaving the transition state for good.

Trajectory (a) is a periodic orbit (PO) lying between
the well and the products, which corresponds to a bend-
ing motion of ABC. We have verified that at the energy
considered, there is no other PO between trajectory (a)
and the products. In such a case, the TS is then the hy-
persurface of the phase space (R, PR, φ, j) the projection
of which on the configuration space is the same as that
of trajectory (a) (see the remarkable chapter written by
Pollak in Ref. [2]). In this regard, the TS is often termed
periodic orbit dividing surface (PODS).

Trajectory (b) leaves the well (from point K in Fig. 1)
with a large recoil velocity and corresponds to a weakly-
rotating molecule AB from the PODS on. j does not vary
significantly en route to products and the transfer of en-
ergy from recoil to rotation motion is expected to be small.

Trajectory (c) starts from a state of the PODS which
is very close to the external states defining the PO and
surrounding any state of the PODS. As a consequence,
trajectory (c) follows initially a path in the configuration
space which is quite close to that of the PO before taking
the direction of the products. Hence, trajectory (c) under-
goes one oscillation before dissociating (see Fig. 1). As a
matter of fact, the closer to the PO the state from which
a trajectory starts, the larger the number of oscillations
preceding the final repulsion. In such a case, j varies peri-
odically before taking its asymptotic value – and so does
the rotational energy – so that the energy transfer from
rotation to translation motion is unpredictable a priori.

Fig. 2. Scheme displaying two trajectories of type (b) and
(c) starting from the TS with a large and low recoil velocity
respectively (thick solid lines) as well as the free-rotation paths
(b′) and (c′) associated to these trajectories (thin solid lines).
The grey area represents the exit-coupling region where most
part of the rotational-translational energy transfer takes place.

In a recent note [12], we proposed an analytical formu-
lation of exit-channel effects for trajectories of type (b),
which can be summarized as follows. In Figure 2, such a
trajectory is represented (path (b)) as well as the trajec-
tory (b’) obtained from the same set of dynamical condi-
tions at the TS, with the difference that the bending force
constant C is kept at zero in equation (2.3). Trajectory
(b’) is thus the free-rotation path associated to trajectory
(b). Our model is based on the simple assumption that
integrating the basic equation

dj

dt
= −

∂VI(R, φ)

φ
(2.4)

along (b’) instead of (b) should lead to satisfying results
since most part of the transfer responsible for the variation
of j takes place in the exit-coupling region where (b) and
(b’) are very close to each other (grey area in Fig. 2). The
main interest of this assumption is that along the free-
rotation path, one is able to integrate equation (2.4) ana-
lytically (further reasonable hypothesis are needed, how-
ever). The resulting expression of the final value jf of j
in terms of the dynamical conditions (φ‡, j‡) at the TS is
found to be:

jf =

(
1−

C‡

α2ν2I‡

)
j‡ −

C‡φ‡

αν
(2.5)

where the force constant C‡ and the reduced moment of
inertia I‡ of the system are given by

C‡ = C exp(−α(R‡ −Re)) (2.6)

and

I‡ =

(
1

mr2
e

+
1

µR‡2

)−1

(2.7)

(m and µ are the reduced masses of AB, and C with re-
spect to AB) and ν is the average recoil velocity in the
exit-coupling region (see further below).
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The basic limitation of the FPI model is that it can-
not be applied just as it is to trajectories of type (c). As
a matter of fact, we see in Figure 2 that such trajecto-
ries are strongly different from their corresponding free-
rotation paths (c’) in the exit-coupling region. Due to the

very small value of Ṙ‡, the former involve at least one
turning point before dissociating whereas the latter reach
forbidden areas and are unphysical. This basic limitation
of the model appears straightforwardly in equation (2.5).
Indeed, ν is very small for trajectories of type (c) so that
jf , which depends on the inverse of ν, may take values not
consistent with energy conservation. This is a real problem
since the knowledge of the transfer for trajectories of type
(c) is necessary for deducing product state distributions
from TS ones.

At the present step of the work, it appears necessary
to analyze in more details the question of exit-channel
effects in order to deduce a model accounting correctly
for the trajectories which leave the PODS with a small
recoil velocity.

3 An elementary Hamiltonian system

The best way to analyze exit-channel effects is to see how
trajectories evolve in the phase space rather than in the
configuration space [2]. For this, one solution is to run
trajectories from the PODS towards the products and to
analyze how the trajectories cross a set of hypersurfaces
orthogonal to the reaction path. A consequence of the
microcanonical assumption 2 is that the trajectories may
start from any point of the PODS with the same density of
probability. However, such a distribution of the initial con-
ditions is not a simple task to achieve from the technical
viewpoint. This is why we shall consider now an elemen-
tary Hamiltonian system which involves the same basic
properties as the previous model reaction, but a PODS
defined so simply that all the technical problems evoked
above are circumvented.

3.1 An elementary Hamiltonian

The Hamiltonian of the system is as follows:

H =
ẋ2

2
+
ẏ2

2
+ e−x

2

y2 = 1. (3.1)

The system is thus analogous to the previous one; it in-
volves an oscillator along the coordinate y (corresponding
to φ) of which the force constant decreases exponentially
with the reaction path x (corresponding to R) from x = 0
to x = ∞. The PODS here is trivially defined by x = 0.
In the following analysis, ẏ is to be compared with j.

3.2 Alteration of a microcanonical distribution
in route to products

The microcanonical flux of trajectories through the PODS
is given by:

F =

∫
dxdydẋdẏ ẋ δ(x) δ(1−H)θ(ẋ) (3.2)

Fig. 3. Upper pannel: microcanonical distribution (5000
points) at the transition state. Lower pannel: reflection of the
previous distribution on the hypersurface defined by x = 4.
Note that the small elliptic area corresponding to a given set
of initial conditions at the transition state (upper pannel), is
preserved on the way to the products (lower pannel), despite
the modification of its contour (Liouville theorem).

which results in

F =

∫
dydẏ. (3.3)

As seen in the above equation, the weight associated with
each point (y, ẏ) of the PODS is equal to 1, due to the
canonical nature of the set of coordinates. In other words,
the microcanonical distribution is simply a constant in
the PODS. Hence, y and ẏ are chosen randomly such that
the point (y, ẏ) lies inside the PODS. Then, ẋ is deduced
from these values, using equation (3.1) (with x = 0). Such
a distribution is represented in Figure 3 (upper pannel).
Its reflection on the hypersurface (HS) defined by x = 4 is
represented in the same figure (lower pannel). Such rep-
resentations are comparable with Poincaré sections, with
the fundamental difference that one trajectory leads to
one point only in both sections [15]. In the lower pannel,
(i) the points are still distributed randomly, but (ii) they
are no longer surrounded by an ellipse. Point (i) is not
surprising. This is just a consequence of the Liouville the-
orem [16] which states that the flux is conserved along
the reaction path. Now, the flux through a given area of
the plane (y, ẏ) is just equal to the area. Hence, a small
area of the PODS (upper pannel) leads to the same area



L. Bonnet and J.C. Rayez: Exit-channel effects in three-atom unimolecular reactions 173

Fig. 4. Representation of five ellipses of the PODS (left top) as well as their reflections on three hypersurfaces respectively
defined by x = 1 (left bottom), 2.5 (right top) and 4 (right bottom). Each ellipse corresponds to a given value of the velocity ẋ
at the TS (see text).

in any HS of the exit-channel defined by a given x, with
the difference that the shape of the area evolves (lower
pannel). The consequence is thus the conservation of a
uniform density of points inside the frontier which is an
ellipse at the TS and is altered en route to products.

3.3 Implications for TST

Consider for instance P (ẏ), the product distribution of ẏ,
associated here to j, the modulus of which is measured by
the experimentalist. We have

P (ẏ) =

∫
ρ(y, ẏ)dy (3.4)

where ρ(y, ẏ) is the density of probability that a trajectory
crosses a hypersurface HS lying in the products, with y
and ẏ. Since we know from the previous arguments that
ρ(y, ẏ) is uniform inside a closed curve of the HS and
is zero outside (see the lower pannel in Fig. 3), we then
deduce:

P (ẏ) = ∆y(ẏ) = ymax(ẏ)− ymin(ẏ). (3.5)

An important conclusion is that, how the frontier is al-
tered upon passing from the PODS to the products is the
only question which one need answer in order to determine

the distribution of any variable in the products. A direct
consequence is that the number of trajectories necessary
to evaluate a product state distribution can be decreased
considerably since one needs only consider those starting
close to the PO. In the present case, only 100 trajectories
are required whereas several thousands are necessary in
the standard Monte-Carlo approach.

3.4 Elliptic initial conditions for the analysis
of exit-channel effects

The only information provided in Figure 3 is a global
transformation of a cloud of points of uniform density
upon passing from the PODS to a given HS. Though
this information has some value, it is not really satisfy-
ing. Rather, one wishes to know the exact correspondence
between one point of the PODS, and its reflection on the
HS. This can be achieved by choosing the initial condi-
tions of the trajectories such that the resulting points are
not distributed at random in the PODS, but form lines.
How these lines are transformed will be shown further to
provide worthwhile information about exit-channel effects.

The choice of the lines should obviously be guided by
physical considerations. For instance, the initial conditions
corresponding to a same value of the velocity ẋ are defined
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Fig. 5. Paths followed in the plane (y, ẏ) by two trajectories.
The external trajectory which corresponds to ρ = (1 − 10−n)
with n = 8 and ϕ = π/2 (see Eqs. (3.7, 3.8)), makes two oscil-
lations before leaving the TS for good. The internal trajectory,
defined by ρ = 0.75 and ϕ = π/2, leaves the TS directly.

by:

y = y0 = ρ cosϕ (3.6)

and

ẏ = ẏ0 = 21/2ρ sinϕ (3.7)

where ρ has a given value in the range [0; 1] and ϕ can take
any value in the range [0; 2π]. The resulting points form
an ellipse in the plane (y, ẏ). The trajectories starting
from this ellipse are expected to spend roughly the same
period of time in the region where the bending force acts
and as a consequence, their motions in the plane (y, ẏ)
should be somewhat similar. In Figure 4 (left top), we
have represented five ellipses corresponding to

ρ =
i

5
− 10−6 (3.8)

i varying from 1 to 5, as well as their reflection on three
HS defined by x = 1 (left bottom), 2.5 (right top) and 4
(right bottom). As one observes, the five ellipses seem to
undergo the same kind of transformation.

Yet, the time spent in the neighborhood of the PO
by the trajectories which starts from the external ellipse
(i = 5), is much larger than the one for the trajectories
starting from the internal ellipses (i = 1−4). Therefore,
the previous observation that the transformation is anal-
ogous for the five ellipses is somewhat surprising. Indeed,
from equations (3.1, 3.6, 3.7), the initial recoil velocity is
given by

ẋ0 = (2(1− ρ2))1/2 (3.9)

so that, only the values of ρ very close to 1 are consistent
with negligible values of ẋ0 necessary for the trajectories
to remain close to the PO initially. For instance, ẋ0 =
0.848 for i = 4, which is not negligible with respect to the
maximum value 1,414 corresponding to ρ = 0. Only for
i = 5 does ẋ0 take the very low value 0.0014.

Actually, the motion of the external trajectories in the
plane (y, ẏ) is quite different from the motion of the in-
ternal ones, as shown in Figure 5. The external trajectory

which corresponds to ρ = (1 − 10−n) with n = 8 and
ϕ = π/2 (y0 = 0 and ẏ0 ∼ 21/2), makes two oscillations
before leaving the TS for good. ẋ remains quasi at zero
for two periods, and increases suddenly, thus making the
repulsion possible. On the other hand, the internal tra-
jectory, defined by ρ = 0.75 and ϕ = π/2 (y0 = 0 and
ẏ0 ∼ 1.06), leaves the TS directly, ẋ0 being different from
zero.

Despite such a difference of behavior, the final phase of
repulsion, occurs roughly in the same way in both cases.
Hence, for the external ellipses, there is (i) a first step
of rotation motion along the ellipses which remain fixed
in the plane (y, ẏ), and (ii) a second step of “pseudo-
rotation” as a whole of the ellipses (see Fig. 4). On the
other hand, only the second step does take place for the
internal ellipses. Since, however, only the latter step is
visible in Figure 4, we understand now why the transfor-
mation of the external ellipse seems to be the same as that
of the internal ones.

The previous considerations are clearly illustrated in
Figure 6 for which the initial conditions form 12 rays dis-
tributed regularly. It is seen that their extremities are
much more rotated than their origins. To be more pre-
cise, the larger ρ, the lower ẋ0 (see Eq. (3.9)), the larger
the time spent in the neighborhood of the PODS and the
larger the rotation. Moreover, we may observe that the
alteration of the rays takes place in the very neighbor-
hood of the PODS since in Figure 6b which corresponds
to x = 0.5, the distortion of the rays is quasi ended. From
x = 0.5 on (Fig. 6c), there is a pseudo-rotation as a whole
as well as a decrease of the major axis of the external el-
lipse in favour of the minor axis in such a way that the
total area is conserved (see also Fig. 4). This transforma-
tion is followed by a horizontal translation of the points
due to the fact that the velocity ẏ is constant. Such a
translation is towards the left for the negative values of ẏ
and towards the right for the positive values.

We note an important fact, i.e. the decrease of the
maximum of the modulus of ẏ from 21/2 to ∼ 1.1. On the
average, the transfer, is thus in favor of ẋ. Similarly, in a
three-atom chemical reaction involving a simple bond fis-
sion, the average value of the modulus of j is expected to
decrease on the way from the TS onto the products, thus
favoring the translational energy as has been observed sev-
eral times recently [12,17,18].

3.5 On the transformation of the ellipses

To our knowledge, there are no analytical solutions to the
equations of motion for the present elementary system.
The goal of this section is thus to provide a qualitative
explanation of the transformations observed in the pre-
vious section. In particular, one wishes to understand the
pseudo-rotation as a whole of the internal ellipses observed
in Figure 6. This transformation is also the second step of
transformation of the external ellipses.

The differential equation relating y to ÿ is

ÿ + 2e−x
2

y = 0. (3.10)
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Fig. 6. Representation of twelve rays of the PODS (a) as well
as their reflections on two hypersurfaces respectively defined
by x = 0.5 (b) and 4 (c).

The local frequency ω(x) of the oscillation for a given x is
thus

ω(x) = 21/2e−x
2/2. (3.11)

Let us now consider an internal ellipse E. x and ω(x)
are respectively an increasing and a decreasing function
of time. Considering time intervals of small duration δt,
one may assume that ω(x) is a constant over each inter-
val, the value of the constant decreasing suddenly at each
change of interval. At time zero, ω(x) = ω0 = 21/2 and in
the first interval, ω(x) = ω1 < ω0 (and so on). Consider
at time zero the point of coordinates (y0, ẏ0). During the
first interval, y satisfies to:

ÿ + ω2
1y = 0 (3.12)

Fig. 7. Schematic representation of the alteration of an inter-
nal ellipse over a small period of time (see text).

a general solution of which is

y = a cos(ω1t+ ϕ). (3.13)

Hence

ẏ = −aω1 sin(ω1t+ ϕ) (3.14)

so that

y2 +

(
ẏ

ω1

)2

= y2
0 +

(
ẏ0

ω1

)2

· (3.15)

Therefore, the path in the plane (y, ẏ), followed during δt
by the trajectory starting from (y0, ẏ0) at time zero, is an
elementary arc of the ellipse defined by:

ay

aẏ
=

1

ω1
(3.16)

where ay and aẏ are the axis of the ellipse along y and ẏ
respectively. Figure 7 depicts the alteration of the ellipse
E (bold solid curve). Point P(0, ρω0) follows the ellipse E′

(external solid curve) defined by ay = ρω0/ω1 and aẏ =
ρω0 (one verifies that they satisfy Eq. (3.16)). E′ is broader
than E since ρω0/ω1 is larger than ρ, which is the value
of the y-axis of E. At time δt, the system is at point Q.
The same reasoning can be applied to any point of E. The
transformation of E leads finally to a quasi-ellipse (dashed
curve) (see also Fig. 4). For x larger than ∼ 2, ω(x) is so
small that the ratio ay/aẏ tends to infinity. Thus, all the
points follow horizontal paths (see Figs. 4–6).

To conclude the present part, the reason why the mod-
ulus |ẏ| of ẏ decreases on the average is now very clear.
As a matter of fact, Figure 7 shows that the top (bottom)
of the dashed curve must lie below (above) the top (bot-
tom) of E since no point of the external ellipse E′, which
surrounds any grey point, lies above P. This does not mean
that exit-channel effects are never in favor of |ẏ|. Indeed,
Figure 8 shows that |ẏ| increases in many cases (36% and
this result does not depend on ρ). Nevertheless, the maxi-
mum increase (0.74) is lower than the maximum decrease
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Fig. 8. Value of (ẏf−ẏ0) (upper pannel) and (|ẏf |−|ẏ0|) (lower
pannel) in terms of ϕ, the initial phase of the trajectory.

(0.89). On the other hand, ẏ has the same probability to
increase than to decrease (see Fig. 8). At first sight, such a
result may perplex. However, the reader may easily verify
that the function B cos(ϕ + ϕB) − A cos(ϕ + ϕA), which
may be written as C cos(ϕ+ϕC), has the same probability
to be positive than negative over one period whereas the
function |B cos(ϕ + ϕB)| − |A cos(ϕ + ϕA)| is more often
negative than positive over one period provided that B
is lower than A. In the present case, A and B are for a
given ellipse, the maximum values of ẏ at the TS and in
the products respectively so that B is lower than A.

To summarize, exit-channel effects are symmetric with
respect to ẏ, but not with respect to |ẏ| which decreases on
the average. Since the rotational state distribution is the
distribution of the modulus of j (to be compared with |ẏ|),
one may understand why exit-channel effects cause the
rotational state distribution to be colder in the products
than at the TS.

3.6 Modelling exit-channel effects

As explained in Section 2, the free-path integration model
allows the quantification of exit-channel effects for trajec-
tories starting from internal ellipses, i.e. far from the PO.
Such trajectories leave the PODS with a large velocity of
recoil ẋ0 (about 21/2 in the present case) which makes rea-
sonable the integration of the equations of motion along
the free path instead of the real path (see Fig. 2). For the
elementary Hamiltonian considered here, the model is as
follows; the free path is defined by:

x = ẋ0t (3.17)

and

y = y0 + ẏ0t. (3.18)

Fig. 9. Time dependence of x for 12 trajectories emerging
from points regularly distributed on an external ellipse of the
PODS.

Moreover, from equation (3.10), the formal expression of
the final value ẏf of ẏ is:

ẏf = ẏ0 − 2

∫ ∞
0

dt e−x
2

y. (3.19)

From equations (3.17–3.19), we have:

ẏf =

(
1−

1

ẋ2
0

)
ẏ0 −

π1/2

ẋ0
y0. (3.20)

However, we have found that the model leads to results in
better agreement with trajectory calculations if one con-
siders the perturbed-path corresponding to the same time
dependence of x (see Eq. (3.17)) and:

y = y0 + ẏ0t+ at2 + bt3. (3.21)

Replacing in equation (3.10), x and y by equations (3.17,
3.21) and owing to the fact that the coefficients of any
power of t is equal to zero, one finds:

a = −y0, b = −
ẏ0

3
· (3.22)

Then, equation (3.19) leads to:

ẏf =

(
1−

1

ẋ2
0

+
1

3ẋ4
0

)
ẏ0−

(
1−

1

2ẋ2
0

)
π1/2

ẋ0
y0. (3.23)

In the case of trajectories emerging from external ellipses,
ẋ0 is very small. From the above equation, it appears
clearly that we are dealing with a problem of small di-
visor which makes FPIM or the related perturbed path
integration model (PPIM) unadapted to the description
of external trajectories a priori.

In Section 3.2, however, it was shown that there is (i)
a first step of rotation motion along the external ellipses
which remain fixed in the plane (y, ẏ), and (ii) a second
step of “pseudo-rotation” as a whole of these ellipses fol-
lowing a sudden increase of ẋ (see Fig. 4). Moreover, this
transformation appears to be analogous to that of the in-
ternal ellipses. Therefore, during the second step, the time
spent in the exit-coupling region by the external trajecto-
ries should be approximately the same on the average than
the corresponding time for the internal ellipses. In other
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Fig. 10. Value of ẏf in terms of ϕ, the initial phase of the
trajectory; solid curve: trajectory calculations; dashed curve:
PPI model.

words, the velocity of recoil ẋ should be approximately
the same on the average for both the external and internal
trajectories, i.e. about 21/2. This is clearly illustrated in
Figure 9 where the time dependence of x is given for twelve
trajectories starting from points regularly distributed on
an external ellipse of the PODS. In the present case, we
observe a rather large period of time (13 arbitrary units)
corresponding to the first step of rotation motion along
the external ellipse, followed by a jump of ẋ leading to a
quasi linear increase of the x coordinate. The idea is then
to “forget” the first step which only modifies the phase
ϕ of the initial conditions given by equations (3.6, 3.7)
with ρ ∼ 1, and to apply equation (3.23) with ẋ0 = 21/2.
The maximum ẏf predicted by the model is 1.25 whereas
trajectory calculations lead to 1.08. The transfer is thus
underestimated. The reason is that ẋ0 cannot be strictly
equal to 21/2 since all the energy would be in the recoil
motion. However, a correction is possible. Since the final
value ẋf of the recoil velocity is related to ẏf by

ẋf = (2− ẏ2
f )1/2 (3.24)

the average value ¯̇xf of ẋf over the range of initial condi-
tions is given by:

¯̇xf =
1

2π

∫ 2π

0

dϕ (2− ẏ2
f )1/2. (3.25)

Replacing ẋ0 by ¯̇xf in equation (3.23) and iterating the
procedure a small number of times (∼ 10), one decreases
the maximum value of ẏf from 1.25 to 1.136, a value
in better agreement with 1.08. In Figure 10, the ϕ-
dependence of ẏf found from trajectories initiated from
the external ellipse defined by ρ = 1−10−6 (solid curve) is
compared with the predictions of the PPI model (dashed
curve). Due to the phase-shift, only the comparison be-
tween the amplitudes of the sinusoidal curves is significant.
The close agreement observed tends to show that FPI or
PPI models can be applied to describe exit-channel ef-
fects at a semi-quantitative level in the case of the simple
models considered in the paper.

Fig. 11. Contour level representation of the DMBE IV poten-
tial energy surface of Pastrana et al. for HO2 (see Ref. [19]),
O2 being kept at its equilibrium distance (1.2 Å). X is equal
to R cosφ and Y to R sinφ (distances are in Å). Contours are
equally spaced by 0.2 eV from −1.8 eV to 1.0 eV. Solid curves
are for negative values of the potential energy whereas dashed
curves are for positive values.

4 The unimolecular reaction
O2X→ O2 + X, X = H, D, T

A contour plot representation of the DMBE IV potential
energy surface (PES) of Pastrana et al. [19] is shown in
Figure 11. O2 is kept at its equilibrium distance (1.2 Å).
Solid curves are for negative values of the potential en-
ergy and dashed curves are for positive ones. There are
two reaction paths connecting two wells with the prod-
ucts. These paths which correspond to values of the Jacobi
angle φ equal to 55◦ and 125◦ respectively, are separated
by a hill which is available at the total energy considered.
The TS, i.e. the dividing surface, has been approximated
variationally by using a standard method [13]. The details
of the calculations, which are not necessary at the present
step of the work, will be given in a subsequent work. The
variational dividing surface (VDS) is found to be located
at R‡ = 2.115 Å. Batches of trajectories have been run
from this surface. Their initial conditions are as follows;
the vibrational energy of O2 is kept at zero and it has been
checked that it does not evolve significantly on the way to
the products, thus proving the quasi adiabatic character
of the vibration motion. The energy available to the rota-
tion and translation motions is EP − EV = EP = 0.5 eV
with respect to the products. The initial conditions on the
VDS are such that:

j‡2

2I‡
+ VI(R

‡, φ‡) = EP −
1

2
µν‡2. (4.1)

Moreover, in the same spirit as previously, we have con-
strained the recoil velocity to satisfy to the following re-
lation:

1

2
µν‡2 = EP

(
1−

(
i

10

)2
)

(4.2)
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Fig. 12. Representation of four curves of the variational dividing surface defined by R = 2.115 Å (left column), as well as
their reflections on the hypersurface defined by R = 4.115 Å (right column). The three systems considered are O2H (top), O2D
(middle) and O2T (bottom).

where i is equal to 3, 5, 7 and 9 respectively. The hyper-
surface necessary for the analysis of the transfers is placed
at R‡ = 4.115 Å. The results are given in Figure 12 in the
three cases X = H, D, T. We have two groups of three
quasi-ellipses (i = 3, 5, 7) corresponding to velocities of
recoil large enough for the trajectories to oscillate around
the two reaction paths, thus remaining in the bottom of
the exit-channels. In the neighborhood of each reaction
path, the bending force may be considered as quasi har-
monic so that the behavior observed is just the one ana-
lyzed in Section 3 (see Figs. 4 and 6). The shape of the
external curve (i = 9) is due to the fact that the excess
energy is larger than the top of the hill (see Fig. 8). The
transformation of this curve is analogous to the one of
the internal “ellipses”. However, the top and the bottom

which correspond to φ = 55◦ and 125◦ are not “rotated”
symmetrically. The reason is that the trajectories starting
from the top (bottom) do not explore regions of the PES
having the same topology than those starting from the
bottom (top). The maximum values of the modulus of j
for H, D and T are 29, 36 and 40 at the TS (in h unit)
and 27, 32.5 and 35.5 in the products. The decrease is thus
equal to 2, 3.5 and 4.5 units respectively. As a matter of
fact, the larger the mass of the departing atom, the larger
the time spent in the interaction region and the larger the
rotational-translational energy transfer. In each case, the
rotational state distribution appears to be colder in the
products than at the TS [18]. However, the shift of the
distribution towards the low values of j is small, due to
the small masses of H, D and T.
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It should be noted that the predictions of the FPI
model concerning the maximum final values of j are 27
for H, 33 for D and 36 for T, in close agreement with the
QCT results. The weakness of the transfers is certainly
responsible for the good agreement found since the lower
the transfers, the closer the free-path and the real-path,
and the more realistic the model is. The technical details
concerning the present application of the FPI model are
sufficiently numerous to represent the content of a full pa-
per. They will be given elsewhere.

5 Conclusion

We have analyzed the key problem of exit-channel effects
in triatomic unimolecular reactions of the type ABC →
AB + C for a total angular momentum equal to zero. The
vibrational energy of AB has been supposed to be quasi
conserved on the way from the transition state TS to the
products and classical mechanics has been used for the
description of rotational and translational motions. The
main findings of the paper are:

(i) in the exit-coupling region, trajectories have a
rotation-like motion in the hypersurface (φ, j) orthog-
onal to the reaction path, which is to be related with
the nature of the dividing surface, the projection of
which on the configuration space coincides with the
one of a periodic orbit lying in the exit-channel. In
all the cases considered, the excess energy was sup-
posed to be sufficiently large for not having to deal
with a multiple TS, i.e. with two periodic orbits or
more in the exit-channel (the analysis would be much
more complicated).

(ii) It is shown that the modulus of the rotational angular
momentum of AB is more likely to decrease than to
increase, the amplitude of the variation being larger
on the average in the first than in the second case. As
a consequence, exit-channel effects cause the rotational
state distribution to be colder in the products than at
the TS. In addition to that, a slight improvement of
a model recently developed by the authors (FPIM or
PPIM) allows the description of exit-channel effects
in a satisfying way and might be included in TST in
order to go beyond the Phase Space Theory (PST) of
product state distributions.

(iii) The analysis has been done using an elementary
Hamiltonian system which allows for circumventing
many technical difficulties, but may be considered as
being much too simplistic. However, the study of the
reaction O2X→ O2 + X (X = H, D, T) with the help
of an accurate potential energy surface leads to similar
conclusions and supports the idea that the dynamical
trends evidenced with our simple Hamiltonian model
are of a general nature. In addition to that, the re-
sults of the FPI model are in good agreement with the
trajectory calculations.

We are very grateful to Dr W. Forst for helpful advices in
writing this paper. Learning from the Editors that Roger Grice,
deceased on March 11th, 1998, was one of the referees, we
decided to dedicate this paper to his memory.
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